Nonparametric regression with rescaled time series errors

نویسندگان

  • José E. Figueroa-López
  • Michael Levine
چکیده

We consider a heteroscedastic nonparametric regression model with an autoregressive error process of finite known order p. The heteroscedasticity is incorporated using a scaling function defined at uniformly spaced design points on an interval [0,1]. We provide an innovative nonparametric estimator of the variance function and establish its consistency and asymptotic normality. We also propose a semiparametric estimator for the vector of autoregressive error process coefficients that is √ T consistent and asymptotically normal for a sample size T . Explicit asymptotic variance covariance matrix is obtained as well. Finally, the finite sample performance of the proposed method is tested in simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Test for the Form of Parametric Regression with Time Series Errors

We propose a new nonparametric method for testing the parametric form of a regression function in the presence of time series errors. The test is motivated by recent advancement in the theory of ANOVA with large number of factor levels and also utilizes a new difference-based estimation method in nonparametric regression with time-series errors proposed by Hall and Van Keilegom (2003). The test...

متن کامل

Nonparametric quantile regression with heavy-tailed and strongly dependent errors

We consider nonparametric estimation of the conditional qth quantile for stationary time series. We deal with stationary time series with strong time dependence and heavy tails under the setting of random design. We estimate the conditional qth quantile by local linear regression and investigate the asymptotic properties. It is shown that the asymptotic properties are affected by both the time ...

متن کامل

Optimal convergence rates in nonparametric regression with fractional time series errors

Consider the estimation of g( ), the -th derivation of the mean function in a xed design, nonparametric regression with a linear, invertible, stationary time series error process i. Assume that g 2 C k and that the spectral density of i has the form f( ) cf j j as ! 0 with constants cf > 0 and 2 ( 1; 1). Let r = (1 )(k )=(2k + 1 ). It is shown that the optimal convergence rate for ĝ( ) is n r ....

متن کامل

Prewhitening-based Estimation in Partial Linear Regression Models: a Comparative Study

• The problem of semiparametric modelling in time series is considered. For this, partial linear regression models are used, that is, regression models where the regression function is the sum of a linear and a nonparametric component. Two estimators for the nonparametric component are shown: one estimator takes into account the dependence structure in the errors of the regression function and ...

متن کامل

A New Test in Parametric Linear Models with Nonparametric Autoregressive Errors

This paper considers a class of parametric models with nonparametric autoregressive errors. A new test is proposed and studied to deal with the parametric specification of the nonparametric autoregressive errors with either stationarity or nonstationarity. Such a test procedure can initially avoid misspecification through the need to parametrically specify the form of the errors. In other words...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012